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Abstract: This paper presents a novel approach to intersection improvement planning utilizing telematics data from connected vehicles to
generate performance measures for mobility, safety, and emissions. Congestion, crashes, and emissions are three major issues in urban areas,
particularly at intersections, and agencies often struggle to prioritize improvement plans because of a lack of objective data. Traditional in-
frastructure sensors provide limited information at selected locations, but it is not feasible to deploy them at all intersections. The use of tele-
matics data from connected vehicles provides a high granularity of information on driving events and trajectories that can be used in
conjunction with vehicle emission modeling to efficiently generate performance measures for all intersections. In a case study of over
300 intersections in Arlington, Texas, the Pareto front method was used to evaluate and rank intersections based on multiple criteria. Inter-
sections falling on the Pareto front were identified as having at least one outstanding (poor) performance measure and were required to be
given priority for improvement. The results were cross-validated with historical crash reports and the judgments of city traffic engineers,
demonstrating the effectiveness of the proposed framework in generating objective and reliable intersection performance measures. This ap-
proach has the potential to significantly improve intersection safety, mobility, and environmental impact, and can serve as a valuable decision-
support tool for transportation agencies. DOI: 10.1061/JUPDDM.UPENG-4705. © 2023 American Society of Civil Engineers.
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improvement.

Introduction

An efficient and safe transportation system is critical to social wel-
fare and economic development in modern society. Transportation
management is considered a core function of most federal and local
governments. However, it is becoming increasingly complex
because of the rapid growth of travel demand and diversified trans-
portation modes. Among all the congestion, crashes, and vehicle-
caused pollution in metropolitan areas, a large portion occurs at
intersections. As such, most agencies closely monitor traffic perfor-
mance at intersections and conduct intersection improvement regu-
larly. Intersection improvement cannot be performed for all
intersections at the same time but must be planned over multiple
years owing to staffing and cost concerns. This practice creates a
need for prioritizing those in need of immediate improvement ac-
cording to certain data-driven performance measures. Agencies
face two challenges in performance evaluation: (1) insufficient sen-
sor deployment at and resulting data from all intersections, because
it is financially infeasible; (2) insufficient safety and air quality in-
formation at intersections, because the infrastructure sensors typi-
cally only connect mobility data (e.g., delays, queue lengths).
In-vehicle GPS data are the most widely used source of information
regarding vehicle movements. These data are obtained through

GPS devices installed in vehicles, which record the longitude, lat-
itude, speed, and direction of the vehicles. They are valuable for ac-
curately mapping the vehicle’s position within a network. Over
time, as technology advances, in-vehicle GPS devices have become
more sophisticated and capable of collecting additional data
through vehicles’ Controller Area Network bus (CAN bus). One
such example is the telematics data from connected vehicles
(CV), also known as connected vehicle data in other literature.
This type of data includes traces and driving events that occur
while vehicles are in motion. Unlike traditional in-vehicle GPS
data, CV data encompass both movement data and driving event
data. Similar to traditional data, CV data include information
such as longitude, latitude, date, time, and direction. However,
they go beyond that and include driving events such as harsh brak-
ing, harsh acceleration, driving above the speed limit or below the
speed limit, vehicle emissions, and even data on whether the seat
belt was latched. With the emerging telematics data of connected
vehicles, the aforementioned two challenges are being resolved.
Such information has been by default collected via in-vehicle sen-
sors by most automobile manufacturers while some manufacturers
have decided to distribute part of the collected data, such as vehicle
trajectories, for external users to exploit more business values. The
published telematics data were reported to cover almost all roads
and be reliably available during most times of the day. They repre-
sent a 2%–6% penetration rate of all vehicles (Khadka et al. 2023).

The objective of this paper is to use emerging telematics data to
explore a multicriteria planning framework for regional intersection
improvement. Through telematics data reduction, aggregation, and
integration with a vehicle emission model, which we call the Motor
Vehicle Emission Simulator (MOVES) Lite, we design an efficient
workflow to evaluate the performance measures in traffic mobility,
safety, and vehicle emissions for each intersection with the scope.
While crossing an intersection, the trajectories of connected vehi-
cles can reveal the number of vehicles’ stops, an indicator of traffic
mobility; the abnormal driving events such as hard brakes indicate
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the likelihood of crashes; applying vehicles’ instantaneous speeds
to the MOVES Lite (Zhou et al. 2015), vehicles’ emissions like
CO2 can be estimated to indicate the level of vehicle-caused air pol-
lutions. All intersections are then evaluated using a multicriteria
framework. The contribution of this paper is that it exploits the po-
tential of telematics data to provide a more comprehensive evalua-
tion framework for intersection improvement planning. The rest of
this paper is structured as follows. The relevant literature is re-
viewed and summarized; then the data processing procedure is de-
scribed in detail, followed by the development of the methodology
for a multicriteria evaluation. At last, we conducted a case study
using the City of Arlington in Texas to provide a recommended
list of prioritized intersections for improvement according to their
performances in mobility, safety, and emissions. The results were
cross-validated with the crash records published by the Texas De-
partment of Transportation and verified by the city traffic
professionals.

Literature Review

Road congestion analysis is vital for transportation agencies to
swiftly address congestion, enhancing traffic flow. Ongoing re-
search seeks congestion prevention solutions, with some studies
utilizing big data or artificial intelligence (AI) for congestion pre-
diction, while others assess vehicle numbers or real-time intersec-
tion images. These techniques usually involve analyzing speed,
density, travel time, and delay. Traffic congestion characterization
often categorizes traffic into smooth, normal, and congested states.
The reviewed literature in this paper focus on the previous studies
on traffic congestion mitigation or ranking, which can be classified
into two main categories: parametric and nonparametric methods.

Parametric Approach

Parametric approaches in methodologies are characterized by their
reliance on explicit assumptions regarding the statistical and distri-
butional properties of the data to be analyzed. This reliance on fixed
parameters and assumptions can be a limitation, as the assumptions
may not always align with the true nature of the data. Parametric
methods offer simplicity and reduced complexity, but accuracy
may suffer if assumptions are violated. Linear regression is a
widely used example of a parametric approach for prediction and
estimation. Lee et al. (2015) employed big data processing to estab-
lish correlations between traffic congestion and weather. Daily
weather was correlated with congestion via multiple linear regres-
sion. The approach encompassed full regression modeling, variable
removal, and residual analysis. The final model achieved 84.6% ac-
curacy, surpassing observations. Porikli and Xiaokun (2004) intro-
duced a low-latency, unsupervised congestion estimation algorithm
using moving picture experts group (MPEG) video. Gaussian Mix-
ture Hidden Markov Models (GM-HMMs) identified congestion
phases via compressed domain congestion signal extraction. Traffic
was categorized as follows: empty, open flow, mild congestion,
heavy congestion, and stopped (Porikli and Xiaokun 2004).

Nonparametric Approach

Compared with the parametric approach, the nonparametric ap-
proach is a statistical method that does not make assumptions
about the characteristics of the data given to the model. Because it
does not rely on any predetermined assumptions or specific param-
eters, this type of model is not affected by the problem of predictions
or estimations deviating from the assumed conditions. Some

commonly used nonparametric approaches include machine learning
and decision trees. Lu and Cao (2003) employed fuzzy logic to eval-
uate traffic congestion using key traffic parameters. They used a
neuro-fuzzy inference system to process simulation data, categoriz-
ing results from smooth flow to congestion. Similarly, Krause
et al. (1996) employed a comparable classificationmethod to identify
congestion on variable-road-sign multilane roads. Variants of fuzzy
logic, like adaptive neuro-fuzzy inference, demonstrated higher ac-
curacy and broader applicability (Olayode et al. 2021). Thianniwet
et al. (2009) introduced a decision tree model, using GPS, camera,
and survey data, to categorize traffic as light, heavy, or jammed
with 91% accuracy. To enhance accuracy, advanced methods like
the Bayesian Network prediction approach by Liu et al. (2014)
were developed, considering directional dependencies for stochastic
traffic congestion assessment. Some studies employed machine
learning on images for traffic analysis. Gao et al. (2021) used a
CNN to define congestion with weather impact. Huang et al.
(2020) predicted congestion from drone images using volume and
speed. Kurniawan et al. (2018) achieved 89.5% accuracy in classify-
ing road conditions with CCTV images. Shen and Chen (2009) used
roadside sensor data with an learning vector quantization neural net-
work (LVQ-NN) model to predict congestion accurately, while
Gong and Fan (2018) employed movable probe vehicle data to en-
hance reliability in ranking congested freeway bottlenecks beyond
fixed sensors. This emphasis on probe vehicle data continued with
Tran Quang and Hoon Bae (2021), who innovatively integrated gra-
dient descent, pooling, and probe vehicle data for 5-min intervals.
This approach outperformed comparable models and facilitated real-
time visualization of evolving urban traffic patterns.

Various neural network models have been employed for road
congestion prediction. ShirMohammadi and Esmaeilpour (2020)
introduced an artificial neural network (ANN) using speed data,
outperforming traditional methods. Similarly, Mondal and Rehena
(2019) used an ANN to classify congestion based on vehicle speed
and density. The recurrent neural network (RNN) approach by
Zhou et al. (2019) with attention outperformed standalone RNN
in predicting regional congestion. Additionally, diverse methods
have emerged: Shenghua et al. (2020) introduced a two-step ran-
dom forest-based congestion prediction system, while Elleuch
et al. (2017) combined decision trees and neural networks, accom-
modating real-time incidents for improved prediction. These ap-
proaches collectively demonstrate the significance of accurately
estimating and predicting congestion ranking on roadways. Some
researchers have used complex models as key tools for traffic con-
gestion prediction. Zhang et al. (2019) introduced a deep neural
network (DNN) capturing network correlations from video data,
while Sun et al. (2019) favored long short-term memory (LSTM),
gated recurrent units (GRU), and RNN over standard models for
short- and long-term forecasts. These studies highlight the impor-
tance of sophisticated methods in addressing congestion challenges.

In addition to these mathematical and statistically driven meth-
ods, another popular approach in optimization problems has gained
traction. Especially in the field of engineering, the concept of the
Pareto front and its efficient solutions are being used widely. It al-
lows us to handle many different goals at the same time, without
having to dive deep into all the specifics of each parameter. This
approach has also been used in transportation problems such as
choosing routes (Xunxue et al. 2007), making fair ramp decisions
(Meng and Khoo 2010), improving signal control (Jiao et al.
2016), and optimizing traffic signals (Stevanovic et al. 2013).
The aforementioned studies on transportation show that using the
Pareto front method has clear advantages for solving these kinds
of problems. Some additional literature is reviewed and Table 1
provides a summary of the selected literature.
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Methodology

According to previous studies, CV data are highly accurate and ubiq-
uitous (Comert 2013). As such, the CV data alone can be used to gen-
erate comprehensive performance measures for regional traffic signal
evaluation. Nonetheless, the challenges lie in how to make the CV
data actionable. The raw CV data cover all kinds of roads, from

interstates to local drivers, and can easily be too big to be processed
with traditional tools like spreadsheets. Another issue is that CV
data were collected everywhere, including parking lots and private
driveways, while only those CV data collected on the public roads
are relevant to traffic management. Therefore, the CV data must be
preprocessed, including for data reduction and map-matching. The
preprocessed data can be aggregated and further analyzed with

Table 1. Summary of selected literature

Source Methodology Input data source/type Application Efficiency

Tran Quang and
Hoon Bae (2021)

A hybrid deep convolutional
neural network model

GPS probe vehicle and QGIS
data

Prediction of traffic
congestion index

Achieved higher R2 value and
outperforms other algorithms

Porikli and
Xiaokun (2004)

Markov model The model was trained based on
MPEG video data

Traffic congestion
estimation

The precision rate is over 95%

Lu and Cao (2003) Fuzzy inference model Input data were collected from a
simulation result

Congestion evaluation
from traffic flow

This model defines a new index name
LOC (level of congestion)

Krause et al.
(1996)

Fuzzy inference model Dedicated short range
communications (DSRC)
detectors for speed data

Traffic management
system for multilane

highway

—

Pongpaibool et al.
(2007)

Adaptive fuzzy inference
model

The traffic data from vehicle
recognition and tracking

software

Traffic evaluation
system (three-level

congestion)

Manually tuned fuzzy logic achieves
88.79% accuracy, whereas the adaptive
version achieves only 75.43% accuracy

Thianniwet et al.
(2009)

Decision tree model Data were collected using GPS
devices, a webcam, and an

opinion survey.

Identify road traffic
congestion level

Accuracy as high as 91.29%

Zhao et al. (2016) ARIMA model Video camera induction coil
detector and speed tachymeter

Travel distance
estimation (TDE)

The predicted results were more reliable

Cao et al. (2018) GRU and interactive
temporal recurrent
convolution network

(ITRCN)

Based on Yahoo! data set Traffic flow prediction Outperforms the conventional GRU and
CNN method 0

Tian and Pan
(2015)

Long short-term memory
recurrent neural network

(LSTM RNN)

Data set from Caltrans
performance measurement

system (PeMs)

Traffic state prediction Both MAPE and RMSE are lowered the
greatest

Gao et al. (2021) Image-based traffic
congestion estimation

framework, with basic CNN

1,400 traffic images including
66,890 vehicles

Traffic congestion
estimation

The proposed framework can perform
traffic congestion computation and

estimation directly

Fig. 1. Overall methodology to find the congested intersection.
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traditional methods. To address these issues, we developed the
multiobjective framework for traffic signal improvement planning
following three sequential steps: (1) CV data reduction; (2) CV
data map-matching; and (3) multiobjective ranking of signalized
intersections.

Agencies usually procure the CV data for the entire region
(statewide or citywide) while most projects focus on a few intersec-
tions/corridors. Therefore, it is necessary to quickly downsize the
regional CV data to the target scope. Second, the reduced CV
data will cover public roads, private roads, and parking facilities.
It is necessary to further filter those data out of the public roads
for the context. Third, multiple performance measures with the
remaining CV data are estimated at each intersection and the inter-
sections are cross-compared and ranked. The highly ranked inter-
sections will be recommended for improvement as a priority.
Fig. 1 shows the workflow of the proposed framework.

CV Data Processing

Automated Polygon Generation around Intersections

There are two ways to obtain the list of intersections in a region,
from the geographic information system (GIS) managed by public
agencies and from crowdsourced map engines, such as OpenStreet-
Map (OSM) (Haklay and Weber 2008). In this study, we used an
open-source tool, referred to as osm2gmns (Lu and Zhou 2023)
to retrieve the geolocations of all signalized intersections within
the jurisdiction of the City of Arlington in Texas. The geolocation
of each intersection’s centroid was retrieved in the form of WGS84
coordinates: (latitude, longitude). Each intersection’s scope was
then extended from the centroid into a square geofence with an
edge length of 305 m (e.g., 153 m upstream of the intersection cen-
troid on all inbound roads). The intersection scope was selected this
way to guarantee all the stops and hard brakes could be well cap-
tured when they were in queues. The queue lengths at intersections
in Arlington, Texas, were almost shorter than 500 ft most of the
time. Conversely, the intersection scope cannot be too large either
because it may double counts stops for those closely spaced inter-
sections. As illustrated in Fig. 2(a), if an intersection scope is too
small, then some vehicles’ controlled stops and hard brakes due
to traffic signal operations may be ignored. If an intersection’s
scope is too large, then vehicles’ stops and hard brakes may be

overestimated. As illustrated in Fig. 2(b), V2’s stops and hard
brakes at the closely spaced upstream intersection may be counted
by the downstream intersection because of the excessively large in-
tersection scope. As such, the length of 500 ft is subject to changes
according to local traffic conditions. The scope of each intersection
at a region should be determined according to the prevailing spac-
ing between intersections and peak-hour queue lengths.

Data Trimming

In this step, it is necessary to trim the original data set covering the
entire region or city and only keep data related to intersections. This
step is to eliminate irrelevant waypoints and significantly reduce
the total data size to be more manageable. Since millions or even
billions of rows of the entire CV data need to be scanned, the trim-
ming algorithm must be based on certain high-performance com-
puting techniques. Khadka et al. (2022) described an efficient
method to trim the data based on an open-source, off-the-shelf com-
puter vision library. We suggest readers refer to that document for
more details on data trimming.

Map-Matching to Further Clean the CV Data

After the data trimming, the remaining CV data must be further
cleaned through map-matching. The map-matching technique
was originally developed to mitigate the large positioning errors
of certain early onboard global positioning system (GPS) receivers.
As illustrated in Fig. 3, the reported waypoints may randomly be
off the road. The assumption that drivers always adhere to traffic
lanes while driving is not always accurate. Recent research has
shed light on the impact of road layouts and traffic conditions on
the dispersion of vehicle paths at intersections (Zhao et al. 2023).
In that case, it is necessary to correct a wrongful waypoint by com-
paring it with its precedent waypoints and historically trace to
match the wrong waypoint to the correct roadway link. The map-
matching technique is critical to ensuring a stable and valid path
in navigation systems.

Thanks to the advancement of GPS technologies, the CV data’s
positioning error can be almost ignored today. Nevertheless, the
map-matching effort is still needed in this context because the
CV data from the real world cover all available public and private
roadways and park spaces. As illustrated in Fig. 4, the intersection
scope covers both public roads and private spaces. The trimmed

(a) (b)

Fig. 2. (a) Data bias due to the smaller scope of intersections; and (b) data bias due to the larger scope of intersections.
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CV data contains waypoints on both public roads and private drive-
ways. Those waypoints collected within the irrelevant private
spaces must be filtered out to avoid bias.

Multiobjective Intersection Ranking Framework

A multiobjective intersection performance ranking framework is
developed in this paper. Based on the characteristics of CV data,
three categories of performance measures are developed: (1) mobil-
ity performance: the average number of CV stops at each intersec-
tion; (2) safety performance: the average number of CV hard
brakes at each intersection; and (3) energy performance: the aver-
age CO2 emission of CVs, which is derived according to CVs’ mo-
tions at intersections and the MOVES Lite emission model (Zhou
et al. 2015). Previous research has provided evidence supporting
the significance of the number of stops as a key factor in assessing
the quality of service in coordinated systems. These stops, directly
observed by drivers, enable the evaluation of signalized intersec-
tions’mobility aspects (Teply and Evans 1989). Furthermore, stud-
ies have indicated a correlation between a higher number of hard
brakes and an increased occurrence of near misses, emphasizing
the critical role of hard brakes in road safety (Subirats et al.
2010). Lastly, the rising concern over increasing CO2 emissions,
primarily from automobiles, has prompted the exploration of alter-
native solutions and the optimization of energy performance to ad-
dress environmental safety (Change 2007). In the case study, a total
of 383 signalized intersections in the City of Arlington, Texas were
investigated. The aforementioned three performance measures
were generated at all intersections. The three performance measures
from the CV data were derived as follows.

Estimating the Average Number of Stops at
Intersections

The average number of vehicle stops at intersections indicates the
performance of traffic signal systems. More stops mean larger con-
gestion, but it is necessary to point out that certain instantaneous
stops (e.g., hard brakes) are not caused by traffic signal systems
and should be separated from control-caused stops. To address

these issues, we designed the following algorithm to tally CV
stops at each intersection.

Algorithm 1. CV control stops capturing at intersections
For each CV trajectory at an intersection, examine the speed
of each waypoint. If an instantaneous speed is slower than 8
KPH per hour (MPH) or 7.33 feet per second (ft/s), then ex-
amine the instantaneous speeds of the following waypoints.
If a vehicle’s low speed (less than 5 MPH) was kept equal to
or longer than 6 s, then a control stop is identified.

A control stop is considered finished once the instantaneous
speed becomes higher than 8 KPH. This algorithm can exclude
the frequent stop-and-go behaviors while the queuing vehicles
slightly reduce their separations from their front vehicles. Such ma-
neuvers typically do not last longer than 6 s.

After the total stops of all CV trajectories are tallied at an inter-
section, the average number of stops is normalized by dividing the
total number of stops by the total number of connecting vehicles
passing that intersection. The following formula can be employed
to compute the average number of stops:

SAi =

∑N
j=0 Sj

N
(1)

where SAi= average number of stops per vehicle at intersection i;
N = total number of vehicles; and Sj= the number of stops for jth
vehicle

Fig. 3. Illustration of position correcting with map-matching.

Fig. 4. Intersection scope with private driveways (The Cooper Street at
the UTA Blvd, Arlington, Texas). (Image © 2023 Airbus, Map Data ©
2023.)

Table 2. Average emission rate for zero-age passenger cars

Operating mode Energy (kJ/h) CO2 (g/h) NOx (g/h) CO (g/h) HC (g/h)

0 49,206 3,536 0.05 2.37 0.04
1 45,521 3,271 0.01 4.06 0.00
… … … … … …
40 641,649 46,113 14.34 407.60 2.73

© ASCE 04023063-5 J. Urban Plann. Dev.

J. Urban Plann. Dev., 2024, 150(1): 04023063



Discussion

Another popular performance indicator is the average vehicle delay
at intersections. However, we found two hurdles in practice. The
OSM does not provide reliable links to free-flow speeds. It

would be necessary to collect that information for public agencies
and it may not be available. Furthermore, the estimation of delay
for connected vehicles at intersections is affected by the turning
maneuvers they perform. The predetermined reduced turning
speeds commonly used are often arbitrary and different from the

(a)

(b)

(c)

Fig. 5. (a) 2D Pareto fronts with the pairs of average hard brake versus average CO2 emission; (b) average CO2 emission versus average stops; and
(c) average number of stops versus average hard brake based on the daily CV data set.
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field observation. These facts can have an adverse impact on delay
estimation. For instance, many drivers tend to compensate for de-
lays by speeding up, resulting in most drivers consistently exceed-
ing the speed limit by 8–16 KPH. Consequently, obtaining an
accurate measurement of the true delay becomes challenging. Ad-
ditionally, there is a lack of standardized benchmarks for turning
maneuvers, making it difficult to accurately assess controlled
delay by considering a specific turning movement speed. The
high variability in speed reduction during turning movements fur-
ther complicates the correct extraction of the control delay compo-
nent from the overall delay. Considering these factors, it is more
accurate to use vehicle stops as a representation of control delay
at intersections. As such, we selected the vehicle stops over the ve-
hicle delays.

Estimating the Average Number of Hard Brakes

The CV data contain the telematics data from vehicles such as hard
brakes and hard accelerations. When a vehicle’s speed change rate
exceeds the threshold, hard braking and harsh acceleration events
are generated and logged in the data set. Intuitively, if there are
many hard brakes in certain areas, it would indicate excessive
stop-and-go. Hence, near misses and crashes are more likely to
occur. Therefore, we use the hard brakes as a proxy for crashes to
represent the safety performance. The thresholds for hard brake
events are programmatically incorporated into the vehicle’s system,
and an event is logged when the deceleration exceeds the designated
threshold of 8.75 ft/s2 (Wejo Data Service 2021). The hard braking
events compiled for a specific intersection are calculated as follows:

HBAi =

∑N
j=0 HBj

N
(2)

where HBAi = average number of hard brakes at intersection i; N=
total number of vehicles; and HBj= number of hard brakes of
vehicle j.

Note that the hard brake events are also correlated with the control
stops. One control stop may contain hard brake(s). Nonetheless,
the directly reported hard brakes from the telematics data based on

high-granular in-vehicle communication will be more reliable than
those derived from the relatively low-granular vehicle waypoints.

Estimating the Average CO2 Emission

Air quality is critical to maintaining clean and sustainable cities and
intersections are where a large portion of air pollution by vehicles is
generated. Therefore, it is important to evaluate the air quality per-
formance at intersections to see whether the air quality performance
should be addressed as a priority. We estimated the CO2 emissions
at intersections according to vehicle trajectories and motion-driven
vehicle emission models. It would be necessary to include an envi-
ronmental component in this process so that agencies can prioritize
intersections that pose a significant environmental concern. With-
out loss of generality, carbon dioxide (CO2) is a major greenhouse
gas and can reflect the entire emission conditions at intersections. In
2004, the United States reported almost 33% of CO2 emission, of
which 80% came from the automobile industry (Change 2007).
We compared variants of emission models to calculate the CO2

emission from vehicles in the roadway network and developed
the MOVES Lite model Zhou et al. (2015), which is based on
MOVES, the state-of-the-art emissions modeling system developed
by the US Environmental Protection Agency (USEPA) (USEPA
2010). The MOVES Lite is a light variant of the MOVES model.
It uses the vehicle specific power (VSP)-to-operating mode conver-
sation table and considers the average emission rates based on ve-
hicle type and operating mode. To calculate VSP, Eq. (3) is used,
adopted from the MOVES model (USEPA 2010), as follows:

VSP =
A

M

( )
*v +

B

M

( )
*v2 +

C

M

( )
*v3 + (a + sin(∅))*v (3)

where, A= rolling term (t); B= rotating term [t/(m/s)]; C= drag
term [t/(m/s2)]; M= vehicle mass (t); v= vehicle speed (m/s); a =
vehicle acceleration (m/s2); and ∅ = road grade.

MOVES Lite first calculates the VSP for each vehicle using its
corresponding operating parameters. With the combination of
speed data and the calculated VSP, the appropriate operating
modes are distinguished. Finally, using the following emission

Fig. 6. 3D Pareto front with three performance measures based on the daily CV data set.

© ASCE 04023063-7 J. Urban Plann. Dev.

J. Urban Plann. Dev., 2024, 150(1): 04023063



Table 2, vehicle emission based on its operating mode, age, and
type is obtained (Frey and Liu 2013).

The aforementioned emission model is applied to each CV tra-
jectory where emissions are calculated every 3 s using the MOVES
Lite model. Once the CO2 emission has been determined, the total
amount of CO2 emissions is averaged over a given time (e.g., a day
or a month) for each intersection and used as an emission perfor-
mance indicator in the following multiobjective ranking process.

Identifying High-Priority Intersections with the Pareto
Front Method

In terms of categories, this task falls into the category of multiob-
jective optimization. We employ the concept of the Pareto front
to determine the best or worst points (i.e., intersections) between
competing objectives. The Pareto front method is commonly
used in engineering and planning to determine the optimal

(a)

(b)

(c)

Fig. 7. (a) 2D Pareto fronts with the pairs of average hard brake versus average CO2 emission; (b) average CO2 emission versus average stops; and
(c) average number of stops versus average hard brake based on the monthly CV data set.
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solution(s) to a problem by comparing multiple objectives. The Pa-
reto front is a set of solutions that are Pareto efficient where at least
one objective is optimal while the other objectives are acceptable.
In this study, we seek to identify the worst intersections (the oppo-
site of best intersections) in a region by maximizing all three objec-
tives: the number of stops, the number of hard brakes, and
emissions using the Pareto front method. Intersections off the Pa-
reto front will have at least one type of performance measure that
is not as poor as those on the Pareto front and so they do not
enter the high-priority intersection list.

The high-priority intersections are identified through three pairs
of objectives. To compare intersection i, j with two performance
measures X, Y, denoted as (Xi, Yi)and (Xj, Yj), if Xi≥Xj and Yi≥
Yj (larger values mean worse), then intersection i with performance
(Xi, Yi) is said to dominate j with performance (Xj, Yj). All intersec-
tions are compared in this way. If there are no intersections domi-
nating intersection i, then i is a dominating intersection. The
dominating intersections are identified in three rounds according
to the three performance measure pairs: (control stops versus
hard brakes), (control stops versus CO2 emission), and (hard
brakes versus CO2 emission).

The three-objective Pareto front is also conducted using three
performance measures altogether. The idea of comparing one inter-
section to the others is to check for dominance. It is similar to the
aforementioned two-objective Pareto front method, but three per-
formance measures should be compared.

The algorithm identifying dominating intersections using the
Pareto front method is described as follows:

Algorithm 2. The algorithm to identify dominating inter-
sections using the Pareto front
Denote two intersections’ indices as i, j; Xi, the average hard
brakes; Yi, the average CO2 emission; Zi, the average number
of stops at intersection i. The same notations apply to intersection
j. Store (e.g., plot) the intersections as a list of dots withX-, Y-, and
Z-coordinates in the performance planes or space.:
Initialize two empty lists for dominating and nondominating
intersections, respectively.

Iterate over the length of the list created for X-coordinates.
For each i in all intersections
Set the initial state of intersection i with the coordinates
of (Xi, Yi, Zi) as “dominating”

FOR any other intersection j with coordi-
nates (Xj, Yj, Zj)
IF Xi<=Xj AND Yi <= Yj AND Zi <= Zj

Change the state of intersection i to “nondomi-
nating”
Break the FOR LOOP

End
End

Case Study: Prioritizing Intersections for
Improvement Using the CV Data in Arlington, Texas

In the case study, we conducted a multiobjective intersection
ranking with the CV data and the Pareto front method. Those inter-
sections dominating all three performances were identified as high-
priority intersections for improvement. Using the OSM platform,
381 signalized intersections were identified within the jurisdiction
of Arlington, Texas. At each identified intersection, a square-
shaped polygon was automatically drawn to cover around 500 ft
back from the stop lines. After performing the data trimming, the

Fig. 8. 3D Pareto front with three performance measures based on the monthly CV data set.

Table 3. Intersections with high-priority need for improvement

Intersection ID Location Nearby area

2 S. Cooper St. and New Center Dr. Interchange
17 E. Arkansas ln. and Forum Dr. Industries and

Warehouses
37 W. Tucker Blvd. and S. Bowen Rd. Residential
100 New York Ave. and E I20 Frontage Rd. Interchange
214 Green Oaks Blvd. and W I20 Frontage Rd. Interchange
352 S. Watson and Davis St. Interchange
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CV data points were further screened out using the map-matching
techniques and the roadway network obtained from the local
agency. Each vehicle and its route information were verified by
comparing the reported vehicle headings, or directions, and the
link headings. The case study was divided into two parts: (1) Inter-
section prioritization using 1 day of CV data and (2) Intersection
prioritization using 1 month of CV data. The two experiments
aim to examine if the proposed framework can be used to help traf-
fic operators identify the most problematic intersections using the
daily incoming CV data as well as help the planners determine a
strategic plan for intersections improvement in the region.

Identifying the High-Priority Intersections for
Improvement Using Daily CV Data

We first processed the CV data collected on September 1, 2021, for
the first experiment. The available CV data covers the Dallas–Fort
Worth area in Texas, representing 2%–6% of all vehicles. The CV
data set includes the movement data with which we derived the
number of stops and the event data from which we retrieved the
hard brakes. After the data trimming and map-matching, 368,236
vehicle trips were observed passing all intersections. At each inter-
section, the number of stops was estimated according to vehicles’
speeds at intersections; the hard brake events were extracted from
event data; and the emissions were estimated using the MOVES
Lite model. In the original CV data set, the indicators used in the
two-dimensional (2D) and three-dimensional (3D) Pareto front
analysis were absolute. For instance, a vehicle may have recorded
a total of three instances of hard braking throughout its entire trip.
However, in the case study, the hard braking events for each vehi-
cle were aggregated and then averaged for each intersection. As a
result, the indicators used in the analysis became relative. It is im-
portant to note that all the indicators were averaged and calculated
on a per-vehicle basis. From the event data set, we identified
193,510 hard brake events for September 1, 2021, within the city
scope.

While conducting the Pareto front analysis, we first constructed
three 2D Pareto fronts using two performance measures each time.
Using Algorithm 2, the dominating and nondominating intersec-
tions were identified for each Pareto front. Fig. 5(a) compares the
performance of average hard brakes and CO2 emissions. Each
dot represents an intersection. The dashed line and the dots on it in-
dicate dominating intersections that at least have one performance
worse than any other intersections. Those intersections on the front
were problematic concerning either or both performance measures:
hard brakes and average CO2. In Fig. 5-(a), 9 out of 383 intersec-
tions were identified as dominating and they enter the list of high-
priority intersections for improvement. We conducted another
similar Pareto front using the pair of performance measures: the
average CO2 emissions and the average number of stops, as
shown in Fig. 5(b). A total of 24 intersections out of 383 intersec-
tions were identified on the Pareto front and they entered the list of
high-priority intersections for improvement. Fig. 5(c) shows the Pa-
reto front for the average number of stops and hard brakes. Out of

the 383 intersections studied, 8 intersections were identified as the
dominating intersections.

In summary, there were a total of 32 unique intersections out of
383 intersections (i.e., 8%) in the three 2D Pareto fronts that were
identified as dominating and they should be improved as a high
priority.

Furthermore, we constructed a 3D Pareto front using Algorithm
2 and the three performance measures altogether. The 3D Pareto
front enables us to find all the correlations among the three perfor-
mance measures. Fig. 6 displays the plotted intersections according
to their three performances. The triangular intersections are domi-
nating. Fig. 6 has been positioned to the best angle to reveal results.
Upon close examination of Fig. 6, 63 intersections were identified
as dominating and should be improved as a priority, representing
16% of all intersections in the city.

Identifying the High-Priority Intersections for
Improvement Using Monthly CV Data

In the second experiment, we used the entire CV data in September
2021 to conduct a similar analysis to the first experiment. The main
difference between the two experiments is that the performance
measures at each intersection were averaged from the 30 days of
CV data regardless of the difference in the day of the week. The
experiment is suitable to develop the intersection improvement
plan based on historical CV data.

Fig. 7 reveals three 2D Pareto fronts, a total of 30 intersections
were identified as dominating and entered the list of intersections
with a high priority for improvement, representing 7.83% of all in-
tersections. Fig. 8 reveals the 3D Pareto front, and 86 intersections

Table 4. Quantitative comparison of intersections based on their objectives

Intersection ID Average number of hard brake Average CO2 emission Average number of stops Dominating factor

2 0.90 0.001 0.14 Hard brake
17 0.65 0.001 0.25 CO2 emissions
37 0.33 0.001 0.32 Number of stops
100 0.48 0.001 0.39 Number of stops
214 0.142 0.001 0.29 Number of stops
352 0.38 0.001 0.13 CO2 emissions

Fig. 9. Intersection (No. 2) layout of S cooper St. at the New Center Dr.
(Image © 2023 Airbus, Maxar Technologies, US Geological Survey,
Map Data © 2023.)
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(22.5%) were identified as dominating and entered the list of inter-
sections with a high priority for improvement.

Discussion

Two experiments represent two scenarios of using the CV data to
develop a traffic signal improvement plan. For daily traffic oper-
ations, the first experiment shows how to use the CV data to iden-
tify problematic intersections every day. The second experiment
demonstrates how to use the historical CV data to prioritize the
intersections for improvement. We also compared the lists of
identified high-priority intersections in two experiments. Most
of them were on both lists. This finding suggests consistency in
identifying the problematic intersections on a daily and monthly
basis. The difference in the results between the two experiments
can be caused by temporary traffic fluctuations at certain intersec-
tions, including big events, constructions, and malfunctioning
traffic signals.

The 2D Pareto fronts can also imply certain solutions to the
problematic intersections. For instance, if an intersection dominates
the number of stops, then the solution may be to reoptimize the traf-
fic signal systems. If the intersection dominates the number of hard
brakes, it implies potential safety hazards and crashes.

In both experiments, it was also found that the number of dom-
inating intersections in the 3D Pareto front was more than the total
number of dominating intersections in the three 2D Pareto fronts.

This finding implies that some problematic intersections can be
identified only if all criteria are considered at the same time.

In practice, we would suggest using both 2D and 3D Pareto
fronts as they each have unique advantages.

Results Validation

Validating the identified intersections with a high priority for im-
provement is important to ensure the proposed framework in this
paper is reasonable. The list of high-priority intersections was
cross-verified according to the historical crash data and local expe-
riences. With the loss of generality, six intersections were selected
from the 3D monthly Pareto front as listed in Table 3.

Table 4 offers a summary of the performances of six
intersections.

As an example, upon a closer examination of Intersection 2’s
layout, as shown in Fig. 9, it appears that Intersection 2 has a
skewed layout. The northbound vehicles must merge at a sharp
angle. This layout may increase the possibility for vehicles to
brake hard to make a left turn. Such intuitive observations can ex-
plain the high number of hard brakes there. Another example is In-
tersection 100, which has the dominating number of stops. This
implies that this intersection may have a mobility issue that is likely
caused by the signal timings.

Validation with the Crash Records Information System
in Texas

Safety at intersections is one of the biggest concerns of agencies
and we compared the high-priority intersections with the dominat-
ing hard brakes with the historical crash records retrieved from the
Crash Records Information System (CRIS) in Texas in 2021
(TxDOT 2023). In the year 2021, there were a total of 6,943 re-
corded crashes in Arlington, Texas. However, due to limitations
in the CRIS Query’s map interface, only a maximum of 5,000
crashes could be displayed. As a result, a total of 4,941 crashes
were visualized in the specified area of Arlington, Texas, as illus-
trated in Fig. 10.

According to the results of the second experiment, the mean
value of average hard brakes among all intersections is 0.53 and
there were 33 intersections where vehicles applied hard brakes
more times than the mean value. Two dominating intersections
with high hard brakes, the Cooper St. at Americana Dr. and Cooper
St. at New CenterDr., were reported with severe crashes. Upon ver-
ification, a city official from Arlington, Texas, acknowledged that
these two intersections are both three-leg intersections located
near each other. The peculiar layout of these intersections may
have resulted in an increased harsh braking, a fact supported by
the analysis of the crash data obtained through the CRIS.

Fig. 10. Comprehensive crash record derived from the CRIS data set.
(Map Data © 2023 Google.)

Table 5. Intersections with dominating hard brakes and the corresponding crash records

INT ID Average hard brake Lat Long Number of crashes

Cooper at Americana Dr. 3 1.22 32.6729 −97.1344 15
HW 360 at Post and Paddock Rd. 213 1.00 32.7934 −97.0569 2
Cooper at New Center 2 0.90 32.6722 −97.1344 10
Random Mill at HW 360 276 0.86 32.7487 −97.0622 3
Cooper at Nedderman 127 0.85 32.7285 −97.1147 6
Pioneer at Oka Ridge 102 0.81 32.7248 −97.1964 2
Roosevelt at S Bowne Rd. 57 0.80 32.6859 −97.1495 2
Random Mill at AT&T 361 0.79 32.7502 −97.0862 9
Collins at Cantor 132 0.79 32.7693 −97.0964 5
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According to available records, these two intersections collectively
witnessed a total of 25 crashes in the year 2021. Table 5 presents
the top nine intersections with the highest number of hard brakes
and a cross-comparison with the crash records in the CRIS. Note
that the high number of hard brakes implies high risks of various
crashes at intersections and suggests that some preventive measures
be prioritized. Additional research may be needed to further iden-
tify the correlation between crashes and hard brakes. In Table 5,
other than the two intersections with higher crashes, various rea-
sons can be identified for high hard brakes, including skewed lay-
out, high truck ratios, limited vision, and excessively long signal
cycles. Thus, all these intersections need to be paid attention to.

Conclusion and Future Work

In this paper, using the emerging CV data, we developed a multi-
objective frame to prioritize intersections to help agencies decide
their intersection improvement plan. The CV data are collected di-
rectly from recently manufactured vehicles’ onboard units and
therefore have ubiquitous coverages for all intersections within ju-
risdictions. Through state-of-the-art big data analytics techniques,
we developed three categories of performance measures at each in-
tersection: the average number of stops (mobility), the average
number of hard brakes (safety), and the average CO2 emissions
(emission). Then we applied the Pareto front method to identify
those dominating intersections that have at least one performance
measure worse than any other intersections. Both 2D Pareto front
and 3D Pareto front are constructed to identify the problematic in-
tersections and possible causes. Through a case study in Arlington,
Texas, we demonstrated two scenarios for intersection improve-
ment planning: identifying problematic intersections using every-
day CV data and scheduling intersection improvement plans
using historical CV data. Both experiments showed reasonable
and promising outcomes and all the identified dominating intersec-
tions can be justified with the local experiences. In the end, we fur-
ther cross-checked the identified intersections dominating in safety
concerns with the historical crash records as well as the comments
by the local agencies.

Note that this data-driven framework only aims to find out those
intersections that show outstanding (poor) performance(s). It
mainly serves the agencies to locate those intersections in need
for immediate improvement. However, this framework does not
provide recommendations on what measures should be adopted
at intersections and what their benefits will be. In addition, since
many intersections in urban areas are closely spaced and correlated,
the improvement at one intersection may have an impact on adja-
cent intersections and change their performance consequently.
For instance, if the congestion at one intersection is reduced, it
may attract more traffic from adjacent intersections, changing the
overall pattern of traffic problems. As such, the intersection im-
provement planning may be performed iteratively to rerank all
the intersections over time. In the meanwhile, predicting the
changes in traffic pattern (e.g., travel demand, driving behaviors)
will also be necessary at those targeted intersections to ensure the
intended benefits. These efforts are out of the scope of this paper
and will be studied in the future. Our future plans involve develop-
ing a comprehensive framework that combines CV data, infrastruc-
ture data, and traffic signal data. By incorporating big data,
machine learning techniques, and travel demand modeling, we
aim to extend the framework to identify and predict intersection
performance for future scenarios. This includes the prediction of
crash occurrences around intersections, allowing us to establish
correlations between predictions and intersection performance

based on CRIS data. Presently, we are using CRIS crash records
to ensure the validity of the ranking. However, as we progress
with advanced machine learning and travel demand modeling, we
anticipate achieving a more precise and accurate ranking of con-
gested intersections.
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